Maurice Holt's 2nd Int'l Conference on Numerical Methods in Fluid Dynamics PDF

By Maurice Holt

ISBN-10: 3540054073

ISBN-13: 9783540054078

Show description

Read or Download 2nd Int'l Conference on Numerical Methods in Fluid Dynamics PDF

Similar computational mathematicsematics books

Get Lecture notes Math788. Computational number theory PDF

Those notes are from a path taught via Michael FUaseta within the Spring of 1996.

Get Transactions on Computational Systems Biology V PDF

The LNCS magazine Transactions on Computational platforms Biology is dedicated to inter- and multidisciplinary examine within the fields of laptop technological know-how and lifestyles sciences and helps a paradigmatic shift within the recommendations from desktop and knowledge technology to deal with the recent demanding situations bobbing up from the structures orientated viewpoint of organic phenomena.

Download e-book for kindle: Computation, Causation, and Discovery by Clark Glymour, Gregory F. Cooper

In technology, company, and policymaking—anywhere info are utilized in prediction—two forms of difficulties requiring very various equipment of research usually come up. the 1st, difficulties of popularity and class, matters studying the right way to use a few gains of a method to properly expect different gains of that approach.

Extra resources for 2nd Int'l Conference on Numerical Methods in Fluid Dynamics

Example text

In fact many of the financial applications that use Monte Carlo simulation involve the evaluation of various stochastic integrals which are related to the probabilities of particular events occurring. In many cases, however, the assumptions of constant volatility and a lognormal distribution for ST are quite restrictive. Real financial applications may require a variety of extensions to the standard Black–Scholes model. Common requirements are for: nonlognormal distributions, time-varying volatilities, caps, floors, barriers, etc.

4 Monte Carlo integration using random numbers. It can be seen that the pseudo-random sequence gives the worst performance. But as the number of points increases, its approximation to the integral improves. Of the quasi-random sequences, it can be seen that the Faure sequence has the worst performance, while both the Sobol and Neiderreiter sequences give rapid convergence to the solution. Finance literature contains many references to the benefits of using quasirandom numbers for computing important financial integrals.

The corresponding cumulative probability distribution functions F (θ ) and F (r) can be found by evaluating the following integrals: 2 F (θ ) = θ 1 2π dθ = 0 θ 2π and r F (r) = re−r 2 /2 dr = −e−r 0 2 /2 r 0 = 1 − e−r 2 /2 We now want to draw variates rˆ and θˆ from the probability distributions f (r) and f (θ ) respectively. To do this we will use the result (see for example Evans, Hastings, and Peacock (2000)), that a uniform variate u, ¯ from the distribution U(0, 1) can be transformed into a variate v¯ from the distribution f (v) by using ¯ or equivalently F (v) ¯ = u.

Download PDF sample

2nd Int'l Conference on Numerical Methods in Fluid Dynamics by Maurice Holt


by Robert
4.5

Rated 4.56 of 5 – based on 47 votes